
IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 8, August 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5832 175

Issues and Challenges in Software Quality

Assurance

Himangi
1
, Surender Singh

2

Dept of Computer Science and Engineering, Om Institute of Technology & Management, Hisar, India1, 2

Abstract: Small scale software product can be developed with the contribution of a single participant but development

at large scale requires the multiple contributors for a single project. As the number of participant team size increases,

ratio of ownership over the developed code for each person also increases with the probability of bugs over specific

LOC. Researchers have developed various Metric tools for different development processes and in this survey paper,

various solutions related to software quality are discussed.

Keywords: Software Quality, Metric, Program Size, SLOC.

I. INTRODUCTION

Developer Risk and Software Quality
Software Quality may suffer from the efforts, skill set and

experience of development team and developer may

perform the number of commits and with each commit, he

can also introduce the bugs also thus results in the risk of

producing the software with degraded quality. Ii is

necessary to measure the impact of individual developer’s

contribution. Selecting an incompatible team for highly

complex projects increases the risk of producing a product

with large scale of bugs and it will also increase the cost of

maintainability[12][13].

Ownership

More than one developer can participate in development

process and in it is important to identify the exact code

contribution ratio for each developer, in order to predict

the bug ratio over per Line of Code.

It can be defined as measurement of the contribution made

by a developer, in order to develop a software module. It

can be calculated on the basis of number of commits

performed by a developer.

Owenership P j di =
Commits j di

 Commits j (di)
N
i=1

Where di denotes the developer and Commits J is the

number of commits performed by developer.

Developer’s quality

 It can be represented in terms of the quality of code being

produced by a specific developer and number of bugs in a

given source code directly depends upon the developer’s

experience, skill set and exposure to the technology being

used for development.

Quality can be measure in terms of the ratio of number of

bugs introduced by developer over the number of commits

performed by same developer.

Quality di = 1 −
introduced j di

Commits (di)

Issues related to developer’s quality [11]

 Work Environment

 Organization structure

 Organization Culture

 Developer Skill Set

 Exposure to Technology

 Decision Making

 Developer’s Contribution

II. LITERATURE SURVEY

Soliman et al. [1] developed automated tool to compute

the six CK metrics by gathering the required information

from class diagrams, activity diagrams, and sequence

diagrams. In addition, extra information is collected from

system designer, such as the relation between methods and

their corresponding activity diagrams and which attributes

they use. The proposed automated tool operates on XMI

standard file format to provide independence from a

specific UML tool. To evaluate the applicability and

quality of this tool, it has been applied to two examples: an

online registration system and one of the bioinformatics
Microarray tools (MIDAS).

M. Greiler et al. [2] did a survey and explored the

relationship of code ownership and software quality using

Microsoft’s software. Analysis shows that the impact of

code quality over the quality of end product and this

relationship can be used to develop a metric which can be

used to reduce the number of bugs. Researchers can utilize

this analytical data for their production teams.

J. H. Hayes et al. [3] investigated the impact of testing
over the quality under the constraints of bugs in a given

code w.r.t. ownership using a method based on supervised

machine learning which can build a decision tree to

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Soliman,%20T.H.A..QT.&searchWithin=p_Author_Ids:38353740000&newsearch=true

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 8, August 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5832 176

identify the bug’s frequency in code. Correlation shows

the dependent relationship between testing and quality

whereas Regression shows the relationship between

measurements and requirements. Analytical and statistical

results that measurements can be enhanced using trained
learning sets.

F. A. Fontana et al. [4] explored the quality of software

architecture using a metric which can be used to find out

code Smells which can cause defilement of software

architecture. Presence of code smells and their relationship

defines the impact of degradation. Proposed scheme can

be extended to measure its influence over quality.

S. Eldh et al. [5] explored the code ownership claimed by

more than one participants, called contributors. In software
development process, different people are engaged for

various activities i.e. analysis, Coding, Testing,

deployment and end user support. Efforts made by each

participant can be defined as the total contribution made

by individual person. It is quite complex to identify the

exact contribution made by each member thus raises the

requirement of code ownership metric which can be used

to identify the various factors related to the claim of

ownership and its impact over the overall development

process.

C. Farag et al. [6] explored the issues related to code
ownership, maintainability, code versioning, aging effects

over the software product and proposed a metric to

analyze these factors. Analysis show that changes made at

ay stage may affect the code ownership as well as it can

also introduce the bugs. If ownership cannot be defined

then it is complex to identify the correlation values also.

Frequency of code updates also affect the ownership ratio.

Z. Bukhari et al. [7] investigated the requirements of

Metric tools for various purpose i.e. development, quality

measurement etc. and identified the different ways of
Metric selection on the basis of their limitations and scope.

Analysis shows that perfect Metric tool can be selected on

the various factors i.e. evaluation cost, measurement

accuracy, dependency factors and Input/Output type etc.

Current research work can be extended to minimize the

human feedback related to Metric selection.

Anjana Gosain et al. [8] explored the different types of

dynamic software metrics for object oriented approaches

under the constraints of validation and software quality.

They sub divided the metrics into different categories i.e.

size which can be defined as the size of the code on disk as
well as memory size occupancy by same code at run time,

complexity which can be defined by frequency, cohesion

and coupling can describe the inside and outside

bounding/dependency of existing modules over each other

at run time, inheritance describes the frequency of

interaction between parent and child classes and

polymorphism metric can describe behavior index as ratio

of polymorphic and non polymorphic dispatches to be

executed. They also represented the Software quality

attributes, metric types and their validation graphically.

Chandan Kumar et al. [9] represented a error estimation

scheme for software based on BBN metrics. Authors
focused on the early development stages at which it is

quite hard to use metrics and considered the reliability and

uncertainty in these phases. Analysis results show

accuracy of proposed method in terms of error detection at

early stages.

Tao Yue et al. [10] developed a framework to produce

quality metrics for MOF meta models to measure the

quality of models. Comparison of newly produced metrics

with manually defined quality metrics using UML classes

and sequence diagrams shows that it automatic produced
metrics are more efficient and can ensure the software

quality in more accurate way. Proposed work can be

extended to develop metric for MOF-based languages.

III. PROBLEM FORMULATION

Quality of a Software product is an important factor that is

need to be measured accurately on the basis of its

attributes but software exists only in virtual form so it is

quite hard to predict the quality of a specific software.

Many researchers have already developed various quality

metrics to measure the quality of different attributes. As
per survey, it can be observed that there is need to extend

the existing research work as well as there is need to

recognize a perfect tool to measure software quality.

Following are some metric tools which can be used to

define the metrics related to Program Size, Ownership and

Developer’s quality etc.:

 Eclipse Metrics

 Analyst4j

 CCCC

 Dependency Finder

 Heap Analysis Tool

 Agile Metrics

IV. CONCLUSION

In this paper, various tools and techniques were explored

which can ensure the quality of the software. Software

Metrics can be used to identify the risk assessment w.r.t.
developer’s experience, coupling and cohesion impact

over quality, dynamic metrics can be used for software

complexity, relationship between development activities

and their impact over quality can be identified, statistic

analysis can be used to exploit the coding standard

violations, service-oriented mining is used ensure the

quality metric for web enabled applications, fault

prediction capabilities can predict the software behavior in

advance, six CK metrics can acquire the information from

various classes, diagrams and can define the relationship

among them etc. Researchers have also developed some

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 8, August 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5832 177

metrics for fault finding, ensuring process accuracy for

object oriented software.

REFERENCES

[1] SOLIMAN, AHMED, S.H, “UTILIZING CK METRICS SUITE

TO UML MODELS: A CASE STUDY OF MICROARRAY

MIDAS SOFTWAR”, INFOS, IEEE-2010, PP.1-6

[2] M. Greiler, Kim Herzig, Jacek Czerwonka, "Code Ownership and

Software Quality: A Replication Study", IEEE/ACM 12th Working

Conference on Mining Software Repositories, 2015 , pp.2-12

[3] J. H. Hayes, Wenbin Li, Tingting Yu, Xue Han, Mark Hays,

Clinton Woodson, "Measuring Requirement Quality to Predict

Testability", AIRE, IEEE, 2015, pp.1-8

[4] F. A. Fontana, Vincenzo Ferme, Marco Zanoni, "Towards assessing

software architecture quality by exploiting code smell relations",

IEEE/ACM 2nd International Workshop on Software Architecture

and Metrics, pp.1-7

[5] S. Eldh, Brendan Murphy, "Code Ownership Perspectives", IEEE

Journals & Magazines, 2015, Vol.32 (6), pp.18-19

[6] C. Farag, Péter Heged˝us, Gergely Ladányi, and Rudolf Ferenc,

"Impact of Version History Metrics on Maintainability", 8th

International Conference on Advanced Software Engineering & Its

Applications, IEEE, pp.30-35

[7] Z. Bukhari, Jamaiah Yahaya, Aziz Deraman, "Software Metric

Selection Methods: A Review", 5th International Conference on

Electrical Engineering and Informatics, IEEE-2015, pp. 433 – 438

[8] ANJANA GOSAIN, GANGA SHARMA, "DYNAMIC SOFTWARE

METRICS FOR OBJECT ORIENTED SOFTWARE: A REVIEW",

INFORMATION SYSTEMS DESIGN AND INTELLIGENT APPLICATIONS,

ADVANCES IN INTELLIGENT SYSTEMS AND COMPUTING, SPRINGER-

2015, PP.579-589

[9] CHANDAN KUMAR, DILIP KUMAR YADAV, "SOFTWARE DEFECTS

ESTIMATION USING METRICS OF EARLY PHASES OF SOFTWARE

DEVELOPMENT LIFE CYCLE", SPRINGER-2014, PP. 1-9

[10] TAO YUE, SHAUKAT ALI, "A MOF-BASED FRAMEWORK FOR

DEFINING METRICS TO MEASURE THE QUALITY OF MODELS",

ECMFA, SPRINGER-2014, PP. 213-229

[11] Yangsong Wu ; State Key Lab. for Novel Software Technol.,

Nanjing Univ., Nanjing, China ; Yibiao Yang ; Yangyang Zhao ;

Hongmin Lu, "The Influence of Developer Quality on Software

Fault-Proneness Prediction", SERE, IEEE-2015, pp.11-19

[12] Lee, Shou-Yu ; Li, Yihao, "DRS: A Developer Risk Metric for

Better Predicting Software Fault-Proneness", TSA, IEEE-2015,

pp.120-127

[13] GREILER, M. ; MICROSOFT CORP., REDMOND, WA, USA

; HERZIG, K. ; CZERWONKA, J.," CODE OWNERSHIP

AND SOFTWARE QUALITY: A REPLICATION STUDY",

MINING SOFTWARE REPOSITORIES (MSR), 2015

IEEE/ACM, PP. 2 - 12

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Soliman,%20T.H.A..QT.&searchWithin=p_Author_Ids:38353740000&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ahmed,%20S.H..QT.&searchWithin=p_Author_Ids:38340785200&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5457305

